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ABSTRACT 

               Different people have different choices and different buying 

habits as well. To fulfil the various demands of different people based 

on their buying behaviour and taste, retailers (and the Government) 

have to choose some sample goods or services to know the buying 

behaviour and cost of living of an economy. This is when market basket 

analysis comes into the picture. This is an imaginary basket used by the 

vendors and Government to fulfil the customer demand. Market basket 

analysis is done by the retailers to check the correlation of two or more 

items that the customers are likely to buy. 

 

  The Objective of this project is to find what items are 

frequently bought together by the customer. The rules and the acquired 

frequent items sets can help in effective sales and marketing. 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

INTRODUCTION 

1.1 Market basket: 

 

The market basket is a list of some fixed items that are used 

to track the inflation and overall price movements of a specific 

market in an economy. A market basket contains some sample 

goods and services to know the inflation. In this technique, the 

inflation rate is the change in the cost of living of two baskets. 

Market basket and its contents are supposed to change every time 

to calculate inflation in an efficient and effective manner. 

 

1.2 Market basket analysis: 

 

Market basket analysis is a method or technique of data 

analysis for retail and marketing purpose. The idea behind market 

basket analysis has emerged from customers who are buying and 

adding different products to their shopping cart or in a market 

basket. MBA (Market Business Analysis) is used to uncover what 

items are frequently brought together by the customer. Market 

basket analysis leads to effective sales and marketing. Market 

basket analysis measures the co-occurrence of products and 

services. Market basket analysis is only considered when there 

are many transactions  in which each transaction has two or more 

items. It is also used to predict future purchase decision of a 

customer. 

 

 

 

 

 

 

 

 



 
 

LITERATURE SURVEY 
 

Within the field of machine learning ,there are two main types of 

tasks:  

1.Supervised Learning  

2.Unsupervised Learning  

 

Supervised Learning: Learning from the know label data to create a 

model then predicting target class for the given input data.  Supervised 

learning is where you have input variables (x) and an output variable 

(Y) and you use an algorithm to learn the mapping function from the 

input to the output.  

Y = f(X) 

The goal is to approximate the mapping function so well that when you 

have new input data (x) that you can predict the output variables (Y) 

for that data. Supervised learning problems can be further grouped into 

regression and classification problems.  

• Classification: A classification problem is when the output 

variable is a category, such as “red” or “blue” or “disease” and 

“no disease”.  

• Regression: A regression problem is when the output variable is 

a real value, such as “dollars” or “weight”.  

 

Unsupervised Learning: Learning from the unlabeled data to 

differentiating the given input data. The goal for unsupervised learning 

is to model the underlying structure or distribution in the data in order 

to learn more about the data. Unsupervised learning problems can be 

further grouped into clustering and association problems  

• Clustering: A clustering problem is where you want to discover 

the inherent groupings in the data, such as grouping customers 

by purchasing behavior.  

• Association: An association rule learning problem is where you 

want to discover rules that describe large portions of your data, 

such as people that buy X also tend to buy Y.  

 

 



 
 

Apriori:  
• It is given by R. Agrawal and R. Srikant in 1994 for finding 

frequent itemsets in a dataset for boolean association rule. 

• It uses prior knowledge of frequent itemset properties.  

• We apply an iterative approach or level-wise search where k-

frequent itemsets are used to find k+1 itemsets. 

• To improve the efficiency of level-wise generation of frequent 

itemsets, an important property is used called Apriori 

property which helps by reducing the search space. 

• Apriori Property: All subsets of a frequent itemset must be 

frequent (Apriori propertry). If an itemset is infrequent, all its 

supersets will be infrequent. 
• There are multiple rules possible even from a very small 

database, so in order to select the interesting ones, we use 

constraints on various measures of interest and significance. 

• Some of the metrics are: 

➢ Support: The support of an itemset X, supp(X) is the 

proportion of transaction in the database in which the 

item X appears. It signifies the popularity of an 

itemset. 

 𝑠𝑢𝑝𝑝(𝑋) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 transaction in which X appears

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠
 

 

➢ Confidence: It signifies the likelihood of item Y 

being purchased when item X is purchased. 

𝑐𝑜𝑛𝑓(𝑋 → 𝑌) =
𝑠𝑢𝑝𝑝(𝑋𝑈𝑌)

𝑠𝑢𝑝𝑝(𝑋)
  

➢ Other metrics are lift , conviction. 

 

The Apriori Algorithm: 
 

It is an iterative process involving two steps: 

 

1. The join step: To find Lk (set of k-itemsets that have support 

count not less than the minimum support ), a set of candidate k-

itemsets is generated by joining Lk-1 with itself. This set of 

candidates is denoted Ck.  



 
 

2. The prune step: Ck is a superset of Lk, that is, its members may 

or may not be frequent, but all of the frequent k-itemsets are 

included in Ck. A database scan to determine the count of each 

candidate in Ck would result in the determination of Lk. To 

reduce the size of Ck, the Apriori property is used as follows. 

Any (k -1)-itemset that is not frequent cannot be a subset of a 

frequent k-itemset. Hence, if any (k-1)-subset of a candidate  

k-itemset is not in Lk-1, then the candidate cannot be frequent 

either and so can be removed from Ck. 

 

The steps 1 and 2 are repeated till we get can no longer produce 

candidate sets(Ck). 
 

Generating Association Rules from Frequent Itemsets: 
 

Once the frequent itemsets from transactions in a database D have 

been found, it is straightforward to generate strong association rules 

from them (where strong association rules satisfy both minimum 

support and minimum confidence). This can be done using the below 

equation : 

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 (𝐴 => 𝐵) = 𝑃 (
𝐵

𝐴
) =

𝑠𝑢𝑝𝑝𝑜𝑟𝑡_𝑐𝑜𝑢𝑛𝑡(𝐴 𝑈 𝐵)

𝑠𝑢𝑝𝑝𝑜𝑟𝑡_𝑐𝑜𝑢𝑛𝑡(𝐴)
 

 

The conditional probability is expressed in terms of itemset support 

count, where support_count(A U B) is the number of transactions 

containing the itemsets A U B, and support_count(A) is the number of 

transactions containing the itemset A. Based on this equation, 

association rules can be generated as follows: 

 

• For each frequent itemset l, generate all nonempty subsets of l. 

• For every nonempty subset s of l, output the rule “s=>(l - s)” if 
𝑠𝑢𝑝𝑝𝑜𝑟𝑡_𝑐𝑜𝑢𝑛𝑡(𝑙)

𝑠𝑢𝑝𝑝𝑜𝑟𝑡_𝑐𝑜𝑢𝑛𝑡(𝑠)
 ≥ min conf,  where min conf is the minimum 

confidence threshold. 

 

Because the rules are generated from frequent itemsets, each one 

automatically satisfies the minimum support.  



 
 

REQUIREMENTS 

 
1. SOFTWARE:  

 

• Operating System          : Windows 8.1  

• Application    : Spyder 3.7  

• Graphical User Interface (GUI) : Tkinter in python  

• IDE       : Spyder 3.7 

  

2. HARDWARE:  

 

• Processor : Intel(R) Core(TM) i5-7200U  CPU @2.5GHz 

2.71GHz 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

IMPLEMENTATION 

 
1. FRONT END: 

 

import tkinter as tk 

import apriori as apri 

import numpy as np 

 

dic = {} 

dec = {} 

 

def isValidFile(name): 

    l=name.split(".") 

    if len(l)!=2: 

        return 0 

    if l[1]!='csv' and l[1]!='arff' and l[1]!='xls': 

        return 0 

    return 1 

 

def getstr(l): 

    if isinstance(l,int): 

        return "[ "+dec[l]+" ]" 

    t = "[" 

    for item in range(len(l)): 

        t += str(dec[l[item]]) 

        if len(l)==1 or item == len(l)-1 : 

            break 

        t += ", " 

    t += "]" 

    return t 

 

def create_win(note,title,font): 

    window = tk.Tk() 

    window.title(title) 

    n = tk.Label(window, text=note,wraplength=210, 

pady=10,bg="white",font=("Helvetica",font)).grid(row=0,padx=

50,pady=50) 



 
 

    window.mainloop() 

 

def show_freq_items(frequent_items): 

    window = tk.Tk() 

    window.title("FREQUENT ITEMSETS") 

    text = "\n" 

    count = 0 

    freq_list = tk.Listbox(window, width=100,height=30) 

    scrollbar1 = tk.Scrollbar(window) 

    scrollbar1.pack(side=tk.RIGHT, fill=tk.Y) 

    for i in frequent_items: 

        text = "" 

        for j in i: 

            freq_list.insert(tk.END, getstr(j)) 

            count += 1 

    tk.Label(window, text="THE FREQUENT ITEM SETS 

ARE:" + str(count), bg="blue", 

width=90,pady=5,font=("Helvetica", 10)).pack() 

    freq_list.config(yscrollcommand=scrollbar1.set) 

    freq_list.pack() 

    scrollbar1.config(command=freq_list.yview) 

    tk.Button(window, width=90, padx=50, pady=5, 

text="EXIT", command=window.destroy).pack() 

    window.mainloop() 

 

def show_association_rules(rules): 

    window = tk.Tk() 

    window.title("ASSOCIATION RULES") 

    tk.Label(window, text="THE NUMBER OF ASSOCIATION 

RULES ARE:" + 

str(len(rules)),bg="blue",width=90,pady=5,font=("Helvetica",10

)).pack() 

    list_box=tk.Listbox(window,width=100,height=30) 

    scrollbar2 = tk.Scrollbar(window) 

    scrollbar2.pack(side=tk.RIGHT, fill=tk.Y) 

    for rule in rules: 



 
 

        text="( "+getstr(rule.antecedent)+"-

>"+getstr(rule.concequent)+" )  s:"+str(round(rule.support,5))+"  

c:"+str(round(rule.confidence,5)) 

        list_box.insert(tk.END,text) 

    list_box.config(yscrollcommand=scrollbar2.set) 

    list_box.pack() 

    scrollbar2.config(command=list_box.yview) 

    tk.Button(window,padx=50,width=90, pady=5, text="EXIT", 

command=window.destroy).pack() 

    window.mainloop() 

 

def final_results_window(rules,freq_items): 

    window=tk.Tk() 

    window.title("FINAL RESULTS") 

    tk.Button(window, width=10, padx=50, pady=5, 

text="SHOW ASSOCIATION 

RULES",command=lambda:show_association_rules(rules)).grid

(row=0,padx=100, pady=10) 

    tk.Button(window, width=10, padx=50, pady=5, 

text="SHOW FREQUENT ITEMSETS", 

command=lambda:show_freq_items(freq_items)).grid(row=1,pa

dx=100, pady=10) 

    tk.Button(window, width=10, padx=50, pady=5, 

text="EXIT", 

command=window.destroy).grid(row=3,padx=100, pady=10) 

    window.mainloop() 

 

 

def apply_algo(): 

    try: 

        filename = algo_name.get() 

        a = thre_supp.get() 

        b = thre_conf.get() 

        window.destroy() 

        min_sup=float(a) 

        min_conf=float(b) 

        print("Received the file name:",filename) 



 
 

        if isValidFile(filename): 

                data = [] 

                """OPENING THE FILE""" 

                f = open(filename) 

                data_txt = f.read().split("\n") 

                for i in data_txt: 

                    data.append(i.split(",")) 

 

                """AND GETTING NUMERIC DATA""" 

                if type(data[0][0]).__name__=='str': 

                    new_list = list() 

                    for i in data: 

                        l = [] 

                        for j in i: 

                            if j not in dic: 

                                dic[j] = len(dic) 

                                dec[len(dec)]=j 

                            l.append(dic[j]) 

                        new_list.append(l) 

                    data=new_list 

 

                """CONVERTING NUMERIC DATA TO NUMPY 

ARRAY""" 

                transactions = np.array(data) 

                apriori = apri.Apriori(min_sup=min_sup, 

min_conf=min_conf) 

                create_win("PROCESSESING\n 

STARTED","STATUS",16) 

                rules = apriori.generate_rules(transactions) 

                create_win("THE GIVEN FILE\n HAS BEEN 

\nPROCESSED","STATUS",16) 

                frequent_items=apriori.freq_itemsets 

                final_results_window(rules,frequent_items) 

 

        else: 

            create_win("Invalid file name","ERROR FOUND",30) 

 



 
 

    except Exception as e: 

          create_win("File does'nt exist","ERROR FOUND",30) 

 

window = tk.Tk() 

window.title("APRIORI ALGORITHM") 

window.geometry("350x140") 

tk.Label(window,text="File 

name",padx=30,pady=5).grid(row=0,column=0) 

algo_name =tk.Entry(window,bg="white",width=20) 

algo_name.grid(row=0,column=1) 

tk.Label(window,padx=30,pady=5,text="Threshold 

support").grid(row=1,column=0) 

thre_supp =tk.Entry(window,bg="white",width=20) 

thre_supp.grid(row=1,column=1) 

tk.Label(window,padx=30,pady=5,text="Threshold 

confidence").grid(row=2,column=0) 

thre_conf =tk.Entry(window,bg="white",width=20) 

thre_conf.grid(row=2,column=1) 

tk.Button(window,width=5,padx=30,pady=5,text="RUN",comm

and=apply_algo).grid(row=3,column=0) 

tk.Button(window,width=5,padx=30,pady=5,text="EXIT",com

mand=window.destroy).grid(row=3,column=1) 

window.mainloop() 

 

2. BACKEND 

 

(APRIORI ALGORITHM IMPLEMENTATION) 

 

from __future__ import division, print_function 

import numpy as np 

import itertools 

 

class Rule(): 

    def __init__(self, antecedent, concequent, confidence, 

support): 

        self.antecedent = antecedent 

        self.concequent = concequent 



 
 

        self.confidence = confidence 

        self.support = support 

 

 

class Apriori(): 

    """A method for determining frequent itemsets in a 

transactional database and also for generating rules for those 

itemsets. 

    Parameters: 

    ----------- 

    min_sup: float 

        The minimum fraction of transactions an itemets needs to 

occur in to be deemed frequent 

    min_conf: float 

        The minimum fraction of times the antecedent needs to 

imply the concequent to justify rule 

    """ 

    def __init__(self, min_sup=0.3, min_conf=0.81): 

 

        """ 

 

        :rtype: 

        """ 

        self.min_sup = min_sup 

        self.min_conf = min_conf 

        self.freq_itemsets = None       # List of freqeuent itemsets 

        self.transactions = None        # List of transactions 

 

    def _calculate_support(self, itemset): 

        count = 0 

        for transaction in self.transactions: 

            if self._transaction_contains_items(transaction, itemset): 

                count += 1 

        support = count / len(self.transactions) 

        return support 

 

    # Prunes the candidates that are not frequent 



 
 

    # => returns list with only frequent itemsets 

    def _get_frequent_itemsets(self, candidates): 

        frequent = [] 

        # Find frequent items 

        for itemset in candidates: 

            support = self._calculate_support(itemset) 

            if support >= self.min_sup: 

                frequent.append(itemset) 

        return frequent 

 

    # True or false depending on the candidate has any 

    # subset with size k - 1 that is not in the frequent 

    # itemset 

    def _has_infrequent_itemsets(self, candidate): 

        k = len(candidate) 

        # Find all combinations of size k-1 in candidate 

        # E.g [1,2,3] => [[1,2],[1,3],[2,3]] 

        subsets = list(itertools.combinations(candidate, k - 1)) 

        for t in subsets: 

            # t - is tuple. If size == 1 get the element 

            subset = list(t) if len(t) > 1 else t[0] 

            if not subset in self.freq_itemsets[-1]: 

                return True 

        return False 

 

    # Joins the elements in the frequent itemset and prunes 

    # resulting sets if they contain subsets that have been 

determined 

    # to be infrequent. 

    def _generate_candidates(self, freq_itemset): 

        candidates = [] 

        for itemset1 in freq_itemset: 

            for itemset2 in freq_itemset: 

                # Valid if every element but the last are the same 

                # and the last element in itemset1 is smaller than the 

last 

                # in itemset2 



 
 

                valid = False 

                single_item = isinstance(itemset1, int) 

                if single_item and itemset1 < itemset2: 

                    valid = True 

                elif not single_item and np.array_equal(itemset1[:-1], 

itemset2[:-1]) and itemset1[-1] < itemset2[-1]: 

                    valid = True 

 

                if valid: 

                    # JOIN: Add the last element in itemset2 to 

itemset1 to 

                    # create a new candidate 

                    if single_item: 

                        candidate = [itemset1, itemset2] 

                    else: 

                        candidate = itemset1 + [itemset2[-1]] 

                    # PRUNE: Check if any subset of candidate have 

been determined 

                    # to be infrequent 

                    infrequent = 

self._has_infrequent_itemsets(candidate) 

                    if not infrequent: 

                        candidates.append(candidate) 

        return candidates 

 

    # True or false depending on each item in the itemset is 

    # in the transaction 

    def _transaction_contains_items(self, transaction, items): 

        # If items is in fact only one item 

        if isinstance(items,str) or isinstance(items,int): 

            return items in transaction 

        # Iterate through list of items and make sure that 

        # all items are in the transaction 

        for item in items: 

            if not item in transaction: 

                return False 

        return True 



 
 

 

    # Returns the set of frequent itemsets in the list of 

transactions 

    def find_frequent_itemsets(self, transactions): 

        self.transactions = transactions 

        # Get all unique items in the transactions 

        unique_items = set(item for transaction in self.transactions 

for item in transaction) 

        # Get the frequent items 

        self.freq_itemsets = 

[self._get_frequent_itemsets(unique_items)] 

        while(True): 

            # Generate new candidates from last added frequent 

itemsets 

            candidates = 

self._generate_candidates(self.freq_itemsets[-1]) 

            # Get the frequent itemsets among those candidates 

            frequent_itemsets = 

self._get_frequent_itemsets(candidates) 

 

            # If there are no frequent itemsets we're done 

            if not frequent_itemsets: 

                break 

 

            # Add them to the total list of frequent itemsets and start 

over 

            self.freq_itemsets.append(frequent_itemsets) 

 

        # Flatten the array and return every frequent itemset 

        frequent_itemsets = [itemset for sublist in 

self.freq_itemsets for itemset in sublist] 

        return frequent_itemsets 

 

    # Recursive function which returns the rules where 

confidence >= min_confidence 

    # Starts with large itemset and recursively explores rules for 

subsets 



 
 

    def _rules_from_itemset(self, initial_itemset, itemset): 

        rules = [] 

        k = len(itemset) 

        # Get all combinations of sub-itemsets of size k - 1 from 

itemset 

        # E.g [1,2,3] => [[1,2],[1,3],[2,3]] 

        subsets = list(itertools.combinations(itemset, k - 1)) 

        support = self._calculate_support(initial_itemset) 

        for antecedent in subsets: 

            # itertools.combinations returns tuples => convert to list 

            antecedent = list(antecedent) 

            antecedent_support = 

self._calculate_support(antecedent) 

            # Calculate the confidence as sup(A and B) / sup(B), if 

antecedent 

            # is B in an itemset of A and B 

            confidence = float("{0:.2f}".format(support / 

antecedent_support)) 

            if confidence >= self.min_conf: 

                # The concequent is the initial_itemset except for 

antecedent 

                concequent = [itemset for itemset in initial_itemset if 

not itemset in antecedent] 

                # If single item => get item 

                if len(antecedent) == 1: 

                    antecedent = antecedent[0] 

                if len(concequent) == 1: 

                    concequent = concequent[0] 

                # Create new rule 

                rule = 

Rule(antecedent=antecedent,concequent=concequent,confidence

=confidence, support=support) 

                rules.append(rule) 

                # If there are subsets that could result in rules 

                # recursively add rules from subsets 

                if k - 1 > 1: 



 
 

                    rules += self._rules_from_itemset(initial_itemset, 

antecedent) 

        return rules 

 

    def generate_rules(self, transactions): 

        self.transactions = transactions 

        frequent_itemsets = 

self.find_frequent_itemsets(transactions) 

        # Only consider itemsets of size >= 2 items 

        frequent_itemsets = [itemset for itemset in 

frequent_itemsets if not isinstance(itemset, int) or 

isinstance(itemset,str)] 

        rules = [] 

        for itemset in frequent_itemsets: 

            rules += self._rules_from_itemset(itemset, itemset) 

        # Remove empty values 

        return rules 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

UML DIAGRAM 

 
We use Activity Diagrams to illustrate the flow of control in a 

system and refer to the steps involved in the execution of a use case. 

We model sequential and concurrent activities using activity diagrams. 

So, we basically depict workflows visually using an activity diagram. 

An activity diagram focuses on condition of flow and the sequence in 

which it happens. We describe or depict what causes a particular event 

using an activity diagram. 

 

UML models basically three types of diagrams, namely, structure 

diagrams, interaction diagrams, and behavior diagrams. An activity 

diagram is a behavioural diagram i.e. it depicts the behavior of a 

system. 

 

An activity diagram portrays the control flow from a start point 

to a finish point showing the various decision paths that exist while the 

activity is being executed. We can depict both sequential processing 

and concurrent processing of activities using an activity diagram. They 

are used in business and process modelling where their primary use is 

to depict the dynamic aspects of a system. 

 

 
 



 
 

DATASET 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

ANALYSIS 

 
1. Run the program 

 

 
 

2. Enter the filename along with minimum support and minimum 

confidence. 

 

 
 

 

 



 
 

 

3. Processing started. 

 

 
 

4. The file has been processed. 

 

 
 

5. The frequent itemsets and association rules can be viewed. 

 

 



 
 

 

6. The frequent Itemsets are 

 

 
 

7. The association rules obtained are 

 

 
 

 

 

 

 



 
 

CONCLUSION 
 
In data mining, association rules are useful for analyzing and predicting 

customer behaviour. They can be helpful in store layout, marketing 

messages, maintain inventory, content placement and also in 

recommendation engines. 

 

The market basket analysis has many applications like cross selling, 

product placement, affinity promotion, fraud detection, understanding 

customer behaviour.  

 

The efficiency of apriori can be improved using hash-based itemset 

counting, transaction reduction, partitioning, sampling and dynamic 

itemset counting. 
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