

ASSOCIATION RULE MINING USING

MARKET BASKET ANALYSIS

Bachelor Of Technology

In

Computer Science And Engineering

By

G.Neelima (16JG1A0533)

 D.Vineela (16JG1A0526)

J.Pavani (16JG1A041)

 D.Poornima (16JG1A0524)

CONTENT

1.Abstract

2.Introduction

3.Literature Survey

4.Requirements

5.Implementation

6.UML Diagram

7.Sample Dataset

8.Analysis

9.Conclusion

9.References

1

2

3

5

7

18

19

20

23

24

ABSTRACT

 Different people have different choices and different buying

habits as well. To fulfil the various demands of different people based

on their buying behaviour and taste, retailers (and the Government)

have to choose some sample goods or services to know the buying

behaviour and cost of living of an economy. This is when market basket

analysis comes into the picture. This is an imaginary basket used by the

vendors and Government to fulfil the customer demand. Market basket

analysis is done by the retailers to check the correlation of two or more

items that the customers are likely to buy.

 The Objective of this project is to find what items are

frequently bought together by the customer. The rules and the acquired

frequent items sets can help in effective sales and marketing.

INTRODUCTION

1.1 Market basket:

The market basket is a list of some fixed items that are used

to track the inflation and overall price movements of a specific

market in an economy. A market basket contains some sample

goods and services to know the inflation. In this technique, the

inflation rate is the change in the cost of living of two baskets.

Market basket and its contents are supposed to change every time

to calculate inflation in an efficient and effective manner.

1.2 Market basket analysis:

Market basket analysis is a method or technique of data

analysis for retail and marketing purpose. The idea behind market

basket analysis has emerged from customers who are buying and

adding different products to their shopping cart or in a market

basket. MBA (Market Business Analysis) is used to uncover what

items are frequently brought together by the customer. Market

basket analysis leads to effective sales and marketing. Market

basket analysis measures the co-occurrence of products and

services. Market basket analysis is only considered when there

are many transactions in which each transaction has two or more

items. It is also used to predict future purchase decision of a

customer.

LITERATURE SURVEY

Within the field of machine learning ,there are two main types of

tasks:

1.Supervised Learning

2.Unsupervised Learning

Supervised Learning: Learning from the know label data to create a

model then predicting target class for the given input data. Supervised

learning is where you have input variables (x) and an output variable

(Y) and you use an algorithm to learn the mapping function from the

input to the output.

Y = f(X)

The goal is to approximate the mapping function so well that when you

have new input data (x) that you can predict the output variables (Y)

for that data. Supervised learning problems can be further grouped into

regression and classification problems.

• Classification: A classification problem is when the output

variable is a category, such as “red” or “blue” or “disease” and

“no disease”.

• Regression: A regression problem is when the output variable is

a real value, such as “dollars” or “weight”.

Unsupervised Learning: Learning from the unlabeled data to

differentiating the given input data. The goal for unsupervised learning

is to model the underlying structure or distribution in the data in order

to learn more about the data. Unsupervised learning problems can be

further grouped into clustering and association problems

• Clustering: A clustering problem is where you want to discover

the inherent groupings in the data, such as grouping customers

by purchasing behavior.

• Association: An association rule learning problem is where you

want to discover rules that describe large portions of your data,

such as people that buy X also tend to buy Y.

Apriori:
• It is given by R. Agrawal and R. Srikant in 1994 for finding

frequent itemsets in a dataset for boolean association rule.

• It uses prior knowledge of frequent itemset properties.

• We apply an iterative approach or level-wise search where k-

frequent itemsets are used to find k+1 itemsets.

• To improve the efficiency of level-wise generation of frequent

itemsets, an important property is used called Apriori

property which helps by reducing the search space.

• Apriori Property: All subsets of a frequent itemset must be

frequent (Apriori propertry). If an itemset is infrequent, all its

supersets will be infrequent.
• There are multiple rules possible even from a very small

database, so in order to select the interesting ones, we use

constraints on various measures of interest and significance.

• Some of the metrics are:

➢ Support: The support of an itemset X, supp(X) is the

proportion of transaction in the database in which the

item X appears. It signifies the popularity of an

itemset.

 𝑠𝑢𝑝𝑝(𝑋) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 transaction in which X appears

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠

➢ Confidence: It signifies the likelihood of item Y

being purchased when item X is purchased.

𝑐𝑜𝑛𝑓(𝑋 → 𝑌) =
𝑠𝑢𝑝𝑝(𝑋𝑈𝑌)

𝑠𝑢𝑝𝑝(𝑋)

➢ Other metrics are lift , conviction.

The Apriori Algorithm:

It is an iterative process involving two steps:

1. The join step: To find Lk (set of k-itemsets that have support

count not less than the minimum support), a set of candidate k-

itemsets is generated by joining Lk-1 with itself. This set of

candidates is denoted Ck.

2. The prune step: Ck is a superset of Lk, that is, its members may

or may not be frequent, but all of the frequent k-itemsets are

included in Ck. A database scan to determine the count of each

candidate in Ck would result in the determination of Lk. To

reduce the size of Ck, the Apriori property is used as follows.

Any (k -1)-itemset that is not frequent cannot be a subset of a

frequent k-itemset. Hence, if any (k-1)-subset of a candidate

k-itemset is not in Lk-1, then the candidate cannot be frequent

either and so can be removed from Ck.

The steps 1 and 2 are repeated till we get can no longer produce

candidate sets(Ck).

Generating Association Rules from Frequent Itemsets:

Once the frequent itemsets from transactions in a database D have

been found, it is straightforward to generate strong association rules

from them (where strong association rules satisfy both minimum

support and minimum confidence). This can be done using the below

equation :

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 (𝐴 => 𝐵) = 𝑃 (
𝐵

𝐴
) =

𝑠𝑢𝑝𝑝𝑜𝑟𝑡_𝑐𝑜𝑢𝑛𝑡(𝐴 𝑈 𝐵)

𝑠𝑢𝑝𝑝𝑜𝑟𝑡_𝑐𝑜𝑢𝑛𝑡(𝐴)

The conditional probability is expressed in terms of itemset support

count, where support_count(A U B) is the number of transactions

containing the itemsets A U B, and support_count(A) is the number of

transactions containing the itemset A. Based on this equation,

association rules can be generated as follows:

• For each frequent itemset l, generate all nonempty subsets of l.

• For every nonempty subset s of l, output the rule “s=>(l - s)” if
𝑠𝑢𝑝𝑝𝑜𝑟𝑡_𝑐𝑜𝑢𝑛𝑡(𝑙)

𝑠𝑢𝑝𝑝𝑜𝑟𝑡_𝑐𝑜𝑢𝑛𝑡(𝑠)
 ≥ min conf, where min conf is the minimum

confidence threshold.

Because the rules are generated from frequent itemsets, each one

automatically satisfies the minimum support.

REQUIREMENTS

1. SOFTWARE:

• Operating System : Windows 8.1

• Application : Spyder 3.7

• Graphical User Interface (GUI) : Tkinter in python

• IDE : Spyder 3.7

2. HARDWARE:

• Processor : Intel(R) Core(TM) i5-7200U CPU @2.5GHz

2.71GHz

IMPLEMENTATION

1. FRONT END:

import tkinter as tk

import apriori as apri

import numpy as np

dic = {}

dec = {}

def isValidFile(name):

 l=name.split(".")

 if len(l)!=2:

 return 0

 if l[1]!='csv' and l[1]!='arff' and l[1]!='xls':

 return 0

 return 1

def getstr(l):

 if isinstance(l,int):

 return "["+dec[l]+"]"

 t = "["

 for item in range(len(l)):

 t += str(dec[l[item]])

 if len(l)==1 or item == len(l)-1 :

 break

 t += ", "

 t += "]"

 return t

def create_win(note,title,font):

 window = tk.Tk()

 window.title(title)

 n = tk.Label(window, text=note,wraplength=210,

pady=10,bg="white",font=("Helvetica",font)).grid(row=0,padx=

50,pady=50)

 window.mainloop()

def show_freq_items(frequent_items):

 window = tk.Tk()

 window.title("FREQUENT ITEMSETS")

 text = "\n"

 count = 0

 freq_list = tk.Listbox(window, width=100,height=30)

 scrollbar1 = tk.Scrollbar(window)

 scrollbar1.pack(side=tk.RIGHT, fill=tk.Y)

 for i in frequent_items:

 text = ""

 for j in i:

 freq_list.insert(tk.END, getstr(j))

 count += 1

 tk.Label(window, text="THE FREQUENT ITEM SETS

ARE:" + str(count), bg="blue",

width=90,pady=5,font=("Helvetica", 10)).pack()

 freq_list.config(yscrollcommand=scrollbar1.set)

 freq_list.pack()

 scrollbar1.config(command=freq_list.yview)

 tk.Button(window, width=90, padx=50, pady=5,

text="EXIT", command=window.destroy).pack()

 window.mainloop()

def show_association_rules(rules):

 window = tk.Tk()

 window.title("ASSOCIATION RULES")

 tk.Label(window, text="THE NUMBER OF ASSOCIATION

RULES ARE:" +

str(len(rules)),bg="blue",width=90,pady=5,font=("Helvetica",10

)).pack()

 list_box=tk.Listbox(window,width=100,height=30)

 scrollbar2 = tk.Scrollbar(window)

 scrollbar2.pack(side=tk.RIGHT, fill=tk.Y)

 for rule in rules:

 text="("+getstr(rule.antecedent)+"-

>"+getstr(rule.concequent)+") s:"+str(round(rule.support,5))+"

c:"+str(round(rule.confidence,5))

 list_box.insert(tk.END,text)

 list_box.config(yscrollcommand=scrollbar2.set)

 list_box.pack()

 scrollbar2.config(command=list_box.yview)

 tk.Button(window,padx=50,width=90, pady=5, text="EXIT",

command=window.destroy).pack()

 window.mainloop()

def final_results_window(rules,freq_items):

 window=tk.Tk()

 window.title("FINAL RESULTS")

 tk.Button(window, width=10, padx=50, pady=5,

text="SHOW ASSOCIATION

RULES",command=lambda:show_association_rules(rules)).grid

(row=0,padx=100, pady=10)

 tk.Button(window, width=10, padx=50, pady=5,

text="SHOW FREQUENT ITEMSETS",

command=lambda:show_freq_items(freq_items)).grid(row=1,pa

dx=100, pady=10)

 tk.Button(window, width=10, padx=50, pady=5,

text="EXIT",

command=window.destroy).grid(row=3,padx=100, pady=10)

 window.mainloop()

def apply_algo():

 try:

 filename = algo_name.get()

 a = thre_supp.get()

 b = thre_conf.get()

 window.destroy()

 min_sup=float(a)

 min_conf=float(b)

 print("Received the file name:",filename)

 if isValidFile(filename):

 data = []

 """OPENING THE FILE"""

 f = open(filename)

 data_txt = f.read().split("\n")

 for i in data_txt:

 data.append(i.split(","))

 """AND GETTING NUMERIC DATA"""

 if type(data[0][0]).__name__=='str':

 new_list = list()

 for i in data:

 l = []

 for j in i:

 if j not in dic:

 dic[j] = len(dic)

 dec[len(dec)]=j

 l.append(dic[j])

 new_list.append(l)

 data=new_list

 """CONVERTING NUMERIC DATA TO NUMPY

ARRAY"""

 transactions = np.array(data)

 apriori = apri.Apriori(min_sup=min_sup,

min_conf=min_conf)

 create_win("PROCESSESING\n

STARTED","STATUS",16)

 rules = apriori.generate_rules(transactions)

 create_win("THE GIVEN FILE\n HAS BEEN

\nPROCESSED","STATUS",16)

 frequent_items=apriori.freq_itemsets

 final_results_window(rules,frequent_items)

 else:

 create_win("Invalid file name","ERROR FOUND",30)

 except Exception as e:

 create_win("File does'nt exist","ERROR FOUND",30)

window = tk.Tk()

window.title("APRIORI ALGORITHM")

window.geometry("350x140")

tk.Label(window,text="File

name",padx=30,pady=5).grid(row=0,column=0)

algo_name =tk.Entry(window,bg="white",width=20)

algo_name.grid(row=0,column=1)

tk.Label(window,padx=30,pady=5,text="Threshold

support").grid(row=1,column=0)

thre_supp =tk.Entry(window,bg="white",width=20)

thre_supp.grid(row=1,column=1)

tk.Label(window,padx=30,pady=5,text="Threshold

confidence").grid(row=2,column=0)

thre_conf =tk.Entry(window,bg="white",width=20)

thre_conf.grid(row=2,column=1)

tk.Button(window,width=5,padx=30,pady=5,text="RUN",comm

and=apply_algo).grid(row=3,column=0)

tk.Button(window,width=5,padx=30,pady=5,text="EXIT",com

mand=window.destroy).grid(row=3,column=1)

window.mainloop()

2. BACKEND

(APRIORI ALGORITHM IMPLEMENTATION)

from __future__ import division, print_function

import numpy as np

import itertools

class Rule():

 def __init__(self, antecedent, concequent, confidence,

support):

 self.antecedent = antecedent

 self.concequent = concequent

 self.confidence = confidence

 self.support = support

class Apriori():

 """A method for determining frequent itemsets in a

transactional database and also for generating rules for those

itemsets.

 Parameters:

 min_sup: float

 The minimum fraction of transactions an itemets needs to

occur in to be deemed frequent

 min_conf: float

 The minimum fraction of times the antecedent needs to

imply the concequent to justify rule

 """

 def __init__(self, min_sup=0.3, min_conf=0.81):

 """

 :rtype:

 """

 self.min_sup = min_sup

 self.min_conf = min_conf

 self.freq_itemsets = None # List of freqeuent itemsets

 self.transactions = None # List of transactions

 def _calculate_support(self, itemset):

 count = 0

 for transaction in self.transactions:

 if self._transaction_contains_items(transaction, itemset):

 count += 1

 support = count / len(self.transactions)

 return support

 # Prunes the candidates that are not frequent

 # => returns list with only frequent itemsets

 def _get_frequent_itemsets(self, candidates):

 frequent = []

 # Find frequent items

 for itemset in candidates:

 support = self._calculate_support(itemset)

 if support >= self.min_sup:

 frequent.append(itemset)

 return frequent

 # True or false depending on the candidate has any

 # subset with size k - 1 that is not in the frequent

 # itemset

 def _has_infrequent_itemsets(self, candidate):

 k = len(candidate)

 # Find all combinations of size k-1 in candidate

 # E.g [1,2,3] => [[1,2],[1,3],[2,3]]

 subsets = list(itertools.combinations(candidate, k - 1))

 for t in subsets:

 # t - is tuple. If size == 1 get the element

 subset = list(t) if len(t) > 1 else t[0]

 if not subset in self.freq_itemsets[-1]:

 return True

 return False

 # Joins the elements in the frequent itemset and prunes

 # resulting sets if they contain subsets that have been

determined

 # to be infrequent.

 def _generate_candidates(self, freq_itemset):

 candidates = []

 for itemset1 in freq_itemset:

 for itemset2 in freq_itemset:

 # Valid if every element but the last are the same

 # and the last element in itemset1 is smaller than the

last

 # in itemset2

 valid = False

 single_item = isinstance(itemset1, int)

 if single_item and itemset1 < itemset2:

 valid = True

 elif not single_item and np.array_equal(itemset1[:-1],

itemset2[:-1]) and itemset1[-1] < itemset2[-1]:

 valid = True

 if valid:

 # JOIN: Add the last element in itemset2 to

itemset1 to

 # create a new candidate

 if single_item:

 candidate = [itemset1, itemset2]

 else:

 candidate = itemset1 + [itemset2[-1]]

 # PRUNE: Check if any subset of candidate have

been determined

 # to be infrequent

 infrequent =

self._has_infrequent_itemsets(candidate)

 if not infrequent:

 candidates.append(candidate)

 return candidates

 # True or false depending on each item in the itemset is

 # in the transaction

 def _transaction_contains_items(self, transaction, items):

 # If items is in fact only one item

 if isinstance(items,str) or isinstance(items,int):

 return items in transaction

 # Iterate through list of items and make sure that

 # all items are in the transaction

 for item in items:

 if not item in transaction:

 return False

 return True

 # Returns the set of frequent itemsets in the list of

transactions

 def find_frequent_itemsets(self, transactions):

 self.transactions = transactions

 # Get all unique items in the transactions

 unique_items = set(item for transaction in self.transactions

for item in transaction)

 # Get the frequent items

 self.freq_itemsets =

[self._get_frequent_itemsets(unique_items)]

 while(True):

 # Generate new candidates from last added frequent

itemsets

 candidates =

self._generate_candidates(self.freq_itemsets[-1])

 # Get the frequent itemsets among those candidates

 frequent_itemsets =

self._get_frequent_itemsets(candidates)

 # If there are no frequent itemsets we're done

 if not frequent_itemsets:

 break

 # Add them to the total list of frequent itemsets and start

over

 self.freq_itemsets.append(frequent_itemsets)

 # Flatten the array and return every frequent itemset

 frequent_itemsets = [itemset for sublist in

self.freq_itemsets for itemset in sublist]

 return frequent_itemsets

 # Recursive function which returns the rules where

confidence >= min_confidence

 # Starts with large itemset and recursively explores rules for

subsets

 def _rules_from_itemset(self, initial_itemset, itemset):

 rules = []

 k = len(itemset)

 # Get all combinations of sub-itemsets of size k - 1 from

itemset

 # E.g [1,2,3] => [[1,2],[1,3],[2,3]]

 subsets = list(itertools.combinations(itemset, k - 1))

 support = self._calculate_support(initial_itemset)

 for antecedent in subsets:

 # itertools.combinations returns tuples => convert to list

 antecedent = list(antecedent)

 antecedent_support =

self._calculate_support(antecedent)

 # Calculate the confidence as sup(A and B) / sup(B), if

antecedent

 # is B in an itemset of A and B

 confidence = float("{0:.2f}".format(support /

antecedent_support))

 if confidence >= self.min_conf:

 # The concequent is the initial_itemset except for

antecedent

 concequent = [itemset for itemset in initial_itemset if

not itemset in antecedent]

 # If single item => get item

 if len(antecedent) == 1:

 antecedent = antecedent[0]

 if len(concequent) == 1:

 concequent = concequent[0]

 # Create new rule

 rule =

Rule(antecedent=antecedent,concequent=concequent,confidence

=confidence, support=support)

 rules.append(rule)

 # If there are subsets that could result in rules

 # recursively add rules from subsets

 if k - 1 > 1:

 rules += self._rules_from_itemset(initial_itemset,

antecedent)

 return rules

 def generate_rules(self, transactions):

 self.transactions = transactions

 frequent_itemsets =

self.find_frequent_itemsets(transactions)

 # Only consider itemsets of size >= 2 items

 frequent_itemsets = [itemset for itemset in

frequent_itemsets if not isinstance(itemset, int) or

isinstance(itemset,str)]

 rules = []

 for itemset in frequent_itemsets:

 rules += self._rules_from_itemset(itemset, itemset)

 # Remove empty values

 return rules

UML DIAGRAM

We use Activity Diagrams to illustrate the flow of control in a

system and refer to the steps involved in the execution of a use case.

We model sequential and concurrent activities using activity diagrams.

So, we basically depict workflows visually using an activity diagram.

An activity diagram focuses on condition of flow and the sequence in

which it happens. We describe or depict what causes a particular event

using an activity diagram.

UML models basically three types of diagrams, namely, structure

diagrams, interaction diagrams, and behavior diagrams. An activity

diagram is a behavioural diagram i.e. it depicts the behavior of a

system.

An activity diagram portrays the control flow from a start point

to a finish point showing the various decision paths that exist while the

activity is being executed. We can depict both sequential processing

and concurrent processing of activities using an activity diagram. They

are used in business and process modelling where their primary use is

to depict the dynamic aspects of a system.

DATASET

ANALYSIS

1. Run the program

2. Enter the filename along with minimum support and minimum

confidence.

3. Processing started.

4. The file has been processed.

5. The frequent itemsets and association rules can be viewed.

6. The frequent Itemsets are

7. The association rules obtained are

CONCLUSION

In data mining, association rules are useful for analyzing and predicting

customer behaviour. They can be helpful in store layout, marketing

messages, maintain inventory, content placement and also in

recommendation engines.

The market basket analysis has many applications like cross selling,

product placement, affinity promotion, fraud detection, understanding

customer behaviour.

The efficiency of apriori can be improved using hash-based itemset

counting, transaction reduction, partitioning, sampling and dynamic

itemset counting.

REFERENCES

[1] https://www.newgenapps.com/blog/application-of-market-
basket-analysis
[2].http://www.sci.csueastbay.edu/~esuess/classes/Statistics_6620/
Presentations/ml13/groceries.csv
[3].https://www3.cs.stonybrook.edu/~cse634/lecture_notes/07aprio
ri.pdf
[4]. https://www.tutorialspoint.com/uml/uml_activity_diagram.html

